Tag: mics-vz-89t

Implementing the MICS-VZ-89T gas sensor on Intel Edison i2c

On my current project I have the requirement to monitor indoor air quality. What is of interest are the levels of Volatile Organic Compounds (VOCs) and CO2.  There are specific thresholds that we are looking for that when exceeded should trigger an action. For VOCs it is when the concentration is greater that 0.9 ppm. For CO2 it is when the concentration is 1000 ppm above ambient out side C02 — which is generally around 400 ppm. The links above out line the dangers of these indoor pollutants. When the threshold is reached we want to start the ventilation system and optionally message a user.

When I need a sensor my first choice is to find one that implements i2c. In this case I found a good candidate for the job in the SGX Sensortech MICS-VZ-89T. The VZ89 product is a small board with a MICS SMD device integrated with an i2c controller. The board comes in both 5 volt (VZ89) and 3.3 volt (VZ89T) versions that are are easy to implement using a logic level shifter with the Edison on a mini breakout board. (For an example of using a logic level shifter you can see my article Intel Edison and I2C sensors with XDK.)

There was no driver that I could find for implementing the board with my setup so I had to roll my own. This wasn’t too hard, but I did have to break out the logic analyzer to get it right. If we examine the MICS-VZ-89T I2C Specification page  we see that the device only has two commands. These are Set ppmC02 and Get VZ89 Status. According to the MICS-VZ-89T Data Sheet the device comes calibrated from the factory so we don’t need to implement Set ppmC02. That leaves us Get VZ89 Status. The code that follows here is available in an XDK project on git hub.

To read the status we have to perform a two step process. First we write a command byte of 0x09 to register address 0x70. We follow this by writing two data bytes to the same register. I write 0x00 twice.

We then read 6 bytes immediately after writing the command byte. The bytes are decoded as follows:

Data byte 1 = CO2-equivalent value. 
Data byte 2 = VOC_SHORT value. 
Data byte 3 = VOC_LONG value 
Data byte 4 = Raw sensor 1st byte (LSB). 
Data byte 5 = Raw sensor 2nd byte 
Data byte 6 = Raw sensor 3rd byte (MSB).

To implement the functionality I created the following class in a node module:

//Import mraa 
var mraa = require('mraa');

//Constructor -- set defaults and populate tx_buf
function VZ89(bus , address){

 this.bus = new mraa.I2c(bus || 1); 
 this.bus.address(address || 0x70); 
 
 this.tx_buf = new Buffer(3); 
 this.tx_buf[0] = 0x09;
 this.tx_buf[1] = 0x00;
 this.tx_buf[2] = 0x00; 
 
}

//Add a function to get the device readings. 
VZ89.prototype.getReadings = function() {
 this.bus.frequency(mraa.I2C_STD);
 this.bus.write(this.tx_buf); 
 return this.bus.read(6);
 
};
//Export as a node module 
module.exports = VZ89;

The MRAA library is used to access the i2c bus, so it is imported at the top or the file. There is a constructor that optionally takes a bus number and a devices address. The VZ89 is addressed at 0x70 so we don’t really need to change that. If the Edison mini-breakout is used we have a choice of busses. I have set this to bus 6 as I am using the Edison Arduino for this example.

A class function is added to implement named getReadings to perform the measurements and return data from the device. In this case the buffer is passed back to the calling program for use.

To use the class the code in the server file would look like this:

//Import our sensor file from the file system
var Sensor = require('./VZ89.js'); 
//Create an instance of the sensor object. 
var sensor = new Sensor();
//Create a var for the receive buffer.
var rx_buf; 

//Call the readBuf function every minute. 
setInterval(readBuf , 60000); 

//A function to read the sensor data, perform data conversions and display on the console every minute.
function readBuf(){

    rx_buf = sensor.getReadings();
 
    console.log("Co2_equ: " + ((rx_buf[0] - 13) * (1600/229) + 400) + " ppm"); 
    console.log("VOC_short: " + (rx_buf[1])); 
    console.log("tVOC: " + (rx_buf[2] * (1000/229)) + " ppb"); 
    console.log("Resistor Value: " + 10 * (rx_buf[3] + (256 * rx_buf[4]) + (65536 * rx_buf[5])) + " ohms"); 
}

The details of converting the rx_buf data to usable values are in the data sheet.  The ones we are most interested in are Co2 equivalent (rx_buf[0]) and total VOC (rx_buf[2]).

As you can see, the MICS-VZ89T is a pretty easy to use device once you know how. There are only a couple of gotchas to be aware of. First, the device can only be polled once a second. I find if I try to get the readings faster than that the device will return nulls. Secondly, care must be taken when handling the device. It contains organic material that is susceptible to solvents.